Slow light, open-cavity formation, and large longitudinal electric field on a slab waveguide made of indefinite permittivity metamaterials
نویسندگان
چکیده
The optical properties of slab waveguides made of indefinite permittivity (ε) materials (IEMs) are considered. In this medium, the real part of the transverse permittivity is negative while that of the longitudinal permittivity is positive. At any given frequency, the IEM waveguide supports an infinite number of transverse magnetic (TM) eigenmodes. For a slab waveguide with a fixed thickness, at most only one TM mode is forward wave. The remainder are backward waves which can have a very large phase index. At a critical thickness, the waveguide supports degenerate forwardand backward-wave modes with zero group velocity if loss is absent. Above the critical thickness, the waveguide supports complex-conjugate decay modes instead of propagating modes. The presence of loss in IEMs will lift the TM mode degeneracy, resulting in modes with finite group velocity. A feasible realization is proposed. The performance of the IEM waveguide is analyzed and possible applications are discussed, which are supported by numerical calculations. These slab waveguides can be used to make optical delay lines in optical buffers to slow down and trap light, to form open cavities, to generate strong longitudinal electric fields, and as phase shifters in optical integrated circuits. Although the presence of loss will hinder these applications, gain can be introduced to compensate the loss and enhance the performance.
منابع مشابه
Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials.
Nanoscale slot waveguides of hyperbolic metamaterials are proposed and demonstrated for achieving large optical field enhancement. The dependence of the enhanced electric field within the air slot on waveguide mode coupling and permittivity tensors of hyperbolic metamaterials is analyzed both numerically and analytically. Optical intensity in the metamaterial slot waveguide can be more than 25 ...
متن کاملNanowire waveguide made from extremely anisotropic metamaterials
Exact solutions are obtained for all the modes of wave propagation along an anisotropic cylindrical waveguide. Closed-form expressions for the energy flow on the waveguide are also derived. For extremely anisotropic waveguide where the transverse permittivity is negative 0 while the longitudinal permittivity is positive 0 , only transverse magnetic TM and hybrid modes will propagate on the wave...
متن کاملMetamaterials and Transformation Optics
Metamaterial is not a well-defined terminology. In fact, this terminology does not mean any specific material, but instead a new way of thinking. Usually this term means carefully engineered material structures composed of carefully designed inclusions that can exhibit unusual electromagnetic properties not inherent in the individual constituent components [1]. These properties include, for exa...
متن کاملThe Effect of Antenna Movement and Material Properties on Electromagnetically Induced Transparency in a Two-Dimensional Metamaterials
Increasing development of nano-technology in optics and photonics by using modern methods of light control in waveguide devices and requiring miniaturization and electromagnetic devices such as antennas, transmission and storage as well as improvement in the electromagnetic tool, have led researchers to use the phenomenon of electromagnetically induced transparency (EIT) and similar phenomena i...
متن کاملExperimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws
Metamaterials allow for extraordinary electromagnetic properties that are not attainable in nature1–9. Indefinite media with hyperbolic dispersion, in particular, have found intriguing applications10–13. The miniaturization of optical cavities increases the photon density of states and therefore enhances light– matter interactions for applications in modern optoelectronics. However, scaling dow...
متن کامل